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Abstract. The storage and efficient withdrawal of material from silos and hoppers is basic to numerous industrial
processes. Practising engineers classify two fundamental flows, namely mass-flow and funnel-flow. The former
describes the situation when the bulk solid is in motion at every point in the silo or hopper, whenever material is
drawn from the outlet. The latter describes the situation when a stable channel forms, called a rat-hole, and the flow
is such that only material above the rat-hole is in motion. Funnel-flow occurs whenever the outlet walls are too
rough and not sufficiently steeply sloped. Funnel-flow is generally erratic and can give rise either to segregation
problems or may lead to complete blockage of the outlet. Here two relevant analytical solutions of the equations
for the non-dilatant double-shearing model of granular flow are presented for both plane and axially symmetric
funnel-flow. These solutions give rise to flow patterns which are similar to those observed in funnel-flow in the
discharge of rectangular and circular cylindrical silos and hoppers.
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1. Introduction

The storage of material in silos and hoppers is fundamental to many important industries such
as mining, agricultural, mineral processing, pharmaceutical and numerous others arising in
chemical engineering. Ideally, material discharge from a silo or hopper should be as uniform
as possible, such that material is discharged in more or less the same sequence as it is loaded
into the container. From a practical perspective, flows which are non-uniform, are either
erratic or lead to a complete blockage, and cause serious problems. Roberts [1] provides a
comprehensive account of existing developments and theory for flow of material from silos
and hoppers. Jenike [2, 3] introduced the classification of two principal modes of flow which
he termed mass-flow and funnel-flow and these are shown schematically in Figures 1 and
2. Mass-flow has been examined in detail by Jenike [4–6] and Johanson [7]. It is the ideal
discharge mechanism because material is in motion at every point in the container whenever
material is drawn from the outlet. Mass-flow guarantees complete discharge of the contents at
predictable flow rates. It is a ‘first-in, first-out’ flow pattern and when properly designed can
re-mix the material during discharge in the event that the material becomes segregated during
filling. Mass-flow is usually achieved with steep smooth hopper surfaces and avoiding abrupt
transitions in the walls of the container. Funnel-flow, shown in Figure 2, arises when a stable
channel forms and only material above and within the channel is in motion. The channel can
either be a slot in a rectangular container or a circular cavity in a cylindrical container, and
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Figure 1. Mass-flow in a hopper; arrows indicate mate-
rial is in motion at every point in the container.

Figure 2. Funnel-flow in a hopper; arrows indicate ma-
terial is flowing only from the top of the container
through a central channel surrounded by a dead region.

in either case the stable channel is referred to as a rat-hole. Our purpose here is to utilize the
double-shearing theory of granular flow to determine mathematical solutions which exhibit
characteristics remarkably similar to those of funnel-flow inside a rat-hole.

The formulation of the equations which govern the deformation and flow of granular
materials is an outstanding problem of continuum mechanics, and no single theory is widely
accepted. Here we adopt the non-dilatant double-shearing theory of granular flow as originally
proposed by Spencer [8] and subsequently described in more detail by Spencer [9]. In the
following section we summarize the basic equations of non-dilatant double-shearing theory
for both plane and axially symmetric flows. In the subsequent two sections we detail a number
of exact solutions which exhibit characteristics of funnel-flow. In Section 5 of the paper we
present some typical numerical results including particle flow paths.

We remark that our principal concern here is the determination of funnel-flow solutions in
an existing stable rat-hole. We do not address the fundamental questions regarding conditions
under which a rat-hole may form, or conditions for an existing rat-hole to be stable or unstable.
These are issues which have yet to be properly addressed in the literature. Practising engineers
are sceptical of classical rat-hole theory as enunciated by Jenike [2, 3] and Jenike and Yen [10,
11], which appears not to reflect actual material behaviour accurately . Hill and Cox [12] re-
examine classical rat-hole theory for a vertical cylindrical cavity and present new analytical
solutions for two special values of the angle of internal friction and an approximate analytical
result for small angles of internal friction. However, to date a proper stability investigation
of an existing rat-hole has yet to be undertaken. This is partly due to the lack of an agreed
mathematical model for granular flow which involves both stress and velocity components.
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Classical theory attempts to address the question of rat-hole stability without recourse to a
theory involving velocity components. From a practical perspective for material flowing from
a silo or hopper, the real problem is to determine the minimum diameter of the outlet such that
the rat-hole is tapered (i.e. unstable) and this is referred to as the critical rat-hole diameter.
For an unstable rat-hole, it is generally believed that the smallest compressive principal stress
must exceed the unconfined yield strength of the material, which is usually denoted by fc (see,
for example, Jenike [2, 3]). Finally, we comment that Hill and Cox [13] provide analytical
expressions for stress profiles for slightly tapered cylindrical granular cavities, while Spencer
and Bradley [14,15] have given approximate stress and velocity solutions for gravity flow
within tapering channels and tubes.

2. Basic equations of non-dilatant double-shearing theory

In this section, for quasi-static steady flow conforming to the Coulomb-Mohr yield condition,
we summarize the basic equations of the double-shearing theory for granular materials for
both plane and axially symmetric flows.

2.1. PLANE STRAIN FLOW

In terms of rectangular Cartesian coordinates (x, y, z) we consider flow in a vertical channel or
slot in the (x, z) plane, with the z-axis vertically upwards. Assuming plane strain conditions,
the non-zero components of the stress tensor satisfy the equilibrium equations

∂σxx

∂x
+ ∂σxz

∂z
= 0,

∂σxz

∂x
+ ∂σzz

∂z
= ρg, (2.1)

where ρ denotes the bulk solid density, assumed constant, and g is the acceleration due to
gravity. In terms of stress invariants p and q and the stress angle ψ which are defined by

p = − 1
2(σxx + σzz), q = 1

2{(σxx − σzz)
2 + 4σ 2

xz}1/2, (2.2)

tan 2ψ = 2σxz
(σxx − σzz)

, (2.3)

we have the following standard expressions

σxx = −p + q cos 2ψ, σzz = −p − q cos 2ψ, σxz = q sin 2ψ. (2.4)

For a cohesionless granular material, the stress relations are completed with the assumption
of the Coulomb–Mohr yield condition

q = p sinφ, (2.5)

where φ denotes the angle of internal friction which is assumed to be constant. The above
equations are generally accepted as a reasonable basis for the determination of the stress
components.

The prescription of equations to determine an associated velocity profile is far more contro-
versial. Here we assume the non-dilatant double-shearing theory. For steady flow the non-zero
velocity components u(x, z) and w(x, z) in the x and z directions respectively, following
Spencer [8, 9] satisfy the equations

∂u

∂x
+ ∂w

∂z
= 0, (2.6)
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∂u

∂z
+ ∂w

∂x

)
cos 2ψ −

(
∂u

∂x
− ∂w

∂z

)
sin 2ψ + sin φ

(
∂u

∂z
− ∂w

∂x
+ 2�

)
= 0, (2.7)

where for steady flow the quantity � is defined by

� = u
∂ψ

∂x
+ w

∂ψ

∂z
. (2.8)

Equation (2.6) is the expression corresponding to the assumption that the flow is isochoric,
while (2.7) expresses the condition that the flow arises as a consequence of simultaneous
shearing on the two families of surfaces on which the critical shear stress is mobilized. Along
with appropriate stress and velocity boundary conditions the above equations represent a
complete description for quasi-static steady plane granular flow.

2.2. AXIALLY SYMMETRIC FLOW

In terms of cylindrical polar coordinates (r, θ, z) we consider axially symmetric flow through
a vertical circular cylindical cavity, again with the z-axis vertically upwards. In this case the
non-zero components of the stress tensor satisfy the equilibrium equations

∂σrr

∂r
+ ∂σrz

∂z
+ σrr − σθθ

r
= 0,

∂σrz

∂r
+ ∂σzz

∂z
+ σrz

r
= ρg, (2.9)

and from the relations

p = − 1
2(σrr + σzz), q = 1

2{(σrr − σzz)
2 + 4σ 2

rz}1/2, (2.10)

tan 2ψ = 2σrz
(σrr − σzz)

, (2.11)

we may deduce

σrr = −p + q cos 2ψ, σzz = −p − q cos 2ψ, σrz = q sin 2ψ. (2.12)

Further, on assuming a stress state corresponding to one of the Haar-von Karman regimes, we
obtain

σθθ = −(p + q). (2.13)

If u(r, z) and w(r, z) now denote the non-zero steady velocity components in the r and z

directions, respectively, then the appropriate equations corresponding to (2.6) and (2.7) for
axially symmetric flow using the non-dilatant double-shearing theory, become

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (2.14)

(
∂u

∂z
+ ∂w

∂r

)
cos 2ψ −

(
∂u

∂r
− ∂w

∂z

)
sin 2ψ + sinφ

(
∂u

∂z
− ∂w

∂r
+ 2�

)
= 0, (2.15)

where here for steady flow the quantity � is defined by

� = u
∂ψ

∂r
+ w

∂ψ

∂z
. (2.16)
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In the following two sections we present a number of solutions of these equations some of
which display the characteristics of funnel-flow. We emphasize that the solutions given below
are derived as steady solutions in a certain reference frame, but in the applications considered
in Section 5, these solutions are exploited for motions which are not steady with respect to
axes fixed in the silos. The two frames of reference differ only by a constant vertical velocity,
so that in the applications context, the various arbitrary constants which emerge below must
be interpreted as arbitrary functions of time.

3. Solutions for plane flow

For a cohesionless granular material, the following solution of the stress equations (2.1)–(2.5)
is derived in Spencer and Bradley [10], namely

σxx = −ρg� cotφ, σxz = ρgx,

σzz = −ρg�(1 + sin2 φ)

sin φ cosφ
+ 2ρg

(�2 − x2)1/2

cosφ
, (3.1)

and ψ = ψ(x) is determined from

tan 2ψ = x cosφ

� sinφ − (�2 − x2)1/2
, (3.2)

and � is a positive constant, which ensures σxx is compressive and the solution applies for
|x| ≤ �. Now for plane steady flow with ψ = ψ(x) we find from (2.6) and (2.7) on introducing
the stream function χ(x, z) such that

u = ∂χ

∂z
, w = −∂χ

∂x
, (3.3)

that χ(x, z) satisfies

(cos 2ψ + sinφ)
∂2χ

∂z2
− (cos 2ψ − sinφ)

∂2χ

∂x2
− 2 sin 2ψ

∂2χ

∂x∂z
+ 2 sin φ

∂ψ

∂x

∂χ

∂z
= 0.(3.4)

Again noting that ψ = ψ(x), we can verify that this equation admits solutions of the form

χ(x, z) = f0(x) + zf1(x) + z2f2(x) + · · · + zmfm(x), (3.5)

where fj (x) (j = 0, 1, 2, . . . m) satisfy certain differential equations obtained by substitution
of (3.5) in (3.4) and equating coefficients of z.

For example, for the case m = 1 we have

χ(x, z) = f (x) + zg(x), (3.6)

and (3.4) yields

(cos 2ψ − sinφ)(f ′′ + zg′′) + 2g′ sin 2ψ − 2gψ ′ sinφ = 0, (3.7)

where primes denote differentiation with respect to x. From (3.7) it is clear that g′′ = 0 and
therefore g(x) = Ax + B where A and B denote arbitrary constants. Using this equation for
g(x), we find from (3.7) that f (x) is obtained by integrating

(cos 2ψ − sinφ)f ′′ + 2A sin 2ψ − 2(Ax + B)ψ ′ sinφ = 0. (3.8)
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On using (3.2) we can show that this equation simplifies to give

f ′′(x) = 2Ax

cos φ(�2 − x2)1/2
+ �(Ax + B) tanφ

(�2 − x2)
, (3.9)

and one integration yields

f ′(x) = − 2A

cosφ
(�2 − x2)1/2 − �A tanφ log(�2 − x2)1/2

+ B tanφ log

(
� + x

� − x

)1/2

+ C, (3.10)

where C denotes a further arbitrary constant. Altogether then, we have from (3.3), (3.6) and
(3.10) the following expressions for the velocity field

u = Ax + B,

w = 2A

cosφ
(�2 − x2)1/2 + (A� − B) tanφ log(� + x)1/2

+ (A� + B) tanφ log(� − x)1/2 − (Az + C). (3.11)

For the case m = 2 we have

χ(x, z) = f (x) + zg(x) + z2

2
h(x), (3.12)

and from (3.4) we obtain h′′ = 0 and therefore h(x) = bx + c and we have on equating
coefficients of z and z0,

g′′(x) = 2bx

cosφ(�2 − x2)1/2
+ �(bx + c)

(�2 − x2)
tanφ,

f ′′(x) = 2xg′(x)
cosφ(�2 − x2)1/2

+ � tanφg(x)

(�2 − x2)

+(bx + c)

cos2 φ

{
1 + sin2 φ − 2� sinφ

(�2 − x2)1/2

}
, (3.13)

as the two determining equations for f (x) and g(x), where b and c denote further arbitrary
constants. These equations may be integrated formally, but we do not proceed further with
the details. An application of the solution for m = 1 is presented in Section 5, and a possible
application of the solution for m = 2 is mentioned in Section 6.

4. Solutions for axially symmetric flow

For a cohesionless granular material, Spencer and Bradley [14] show that a solution of (2.5),
(2.9) and (2.13) having all stress components independent of z and finite along the z-axis is
given by

σrr = − ρgr

4βT
[(1 − β) + (1 + β)T 2], σθθ = − ρgr

4βT
(1 + β)(1 + T 2),

σzz = − ρgr

4βT
[(1 + β) + (1 − β)T 2], σrz = ρgr

2
, (4.1)
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where here β denotes sinφ and T = tanψ satisfies the differential equation

dT

dr
= T [(1 − 3β) + (1 + β)T 2]

r[(1 − β) − (1 + β)T 2] , (4.2)

which may be integrated to yield

r = r0T
2n−1

[(1 − 3β) + (1 + β)T 2]n , (4.3)

where r0 denotes an arbitrary constant and the index n is defined by

n = 1 − 2β

1 − 3β
. (4.4)

It is clear that the character of the solution varies according as

0 < β < 1
3 ,

1
3 < β < 1

2 ,
1
2 < β < 1,

and β = 1/3 and 1/2 constitute additional special cases.
For the velocity field we introduce a stream function χ(r, z) such that

u = 1

r

∂χ

∂z
, w = −1

r

∂χ

∂r
, (4.5)

and then the double-shearing condition (2.15) becomes

(cos 2ψ + β)
∂2χ

∂z2
− (cos 2ψ − β)

(
∂2χ

∂r2
− 1

r

∂χ

∂r

)

− sin 2ψ

(
2
∂2χ

∂r∂z
− 1

r

∂χ

∂z

)
+ 2β

∂ψ

∂r

∂χ

∂z
= 0, (4.6)

noting again that β = sinφ and that ψ = ψ(r). As for plane flows, this equation admits
solutions of the form

χ(r, z) = f0(r) + zf1(r) + z2f2(r) + · · · + zmfm(r), (4.7)

where fj (r) (j = 0, 1, 2, . . . m) satisfy certain differential equations obtained by substitution
of (4.7) in (4.6).

For the case m = 1 we have

χ(r, z) = f (r) + zg(r), (4.8)

and from (4.6) we may deduce

g′′ − g′

r
= 0,

(cos 2ψ − β)

(
f ′′ − f ′

r

)
+ sin 2ψ

(
2g′ − g

r

)
− 2βgψ ′ = 0, (4.9)

where primes here denote differentiation with respect to r. From (4.9)1 we have

g(r) = A1r
2 + B1, (4.10)
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Table 1. Special values of β = sinφ giving rise to
integer values of n as defined by (4.4).

n −3 −2 −1 0 1 2 3

β = sinφ 4
11

3
8

2
5

1
2 0 1

4
2
7

where again A1 and B1 denote arbitrary constants, and therefore (4.9)2 becomes

(cos 2ψ − β)

(
f ′′ − f ′

r

)
+
(

3A1r − B1

r

)
sin 2ψ − 2β(A1r

2 + B1)ψ
′ = 0. (4.11)

On writing this equation as

d

dr

(
f ′

r

)
= −

(
3A1 − B1

r2

)
sin 2ψ

(cos 2ψ − β)
+ 2β

(A1r
2 + B1)ψ

′

r(cos 2ψ − β)
, (4.12)

we can show by means of (4.2) and (4.3) that∫ (
3A1 − B1

r2

)
sin 2ψ dr

(cos 2ψ − β)
= 3A1r0

(1 − 2β)
[(1 − 3β)s2 + (1 + β)]−n

+2B1

r0

∫
[(1 − 3β)s2 + (1 + β)]n−1 ds

s
, (4.13)

where s = T −1. Similarly, the second integral in (4.12) can be shown to become∫ (
A1r+ B1

r

)
dψ

(cos 2ψ − β)
= A1r0

∫
s ds

[(1+β)− (1−β)s2][(1+β)+ (1−3β)s2]n

+B1

r0

∫ [(1 + β) + (1 − 3β)s2]n
[(1 + β) − (1 − β)s2]

ds

s
. (4.14)

For special values of β = sin φ, such as those given in Table 1, n becomes a positive or
negative integer which considerably facilitates the evaluation of the above integrals. In the
following section we examine a special case of the above solution for the problem of axially
symmetric funnel-flow.

For the case m = 2 we have

χ(r, z) = f (r) + zg(r) + z2

2
h(r), (4.15)

and from (4.6) we may deduce

h′′ − h′

r
= 0,

(cos 2ψ − β)

(
g′′ − g′

r

)
+ sin 2ψ

(
2h′ − h

r

)
− 2βhψ ′ = 0, (4.16)

(cos 2ψ − β)

(
f ′′ − f ′

r

)
+ sin 2ψ

(
2g′ − g

r

)
− 2βgψ ′ − (cos 2ψ + β)h = 0,
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Figure 3. Idealization of funnel-flow; depicting a triangular region collapsing into a rat-hole.

which involves evaluating integrals similar to those above for m = 1. However, the details
rapidly become complicated and we do not pursue such solutions here.

5. Applications of m = 1 solutions to funnel-flow

In this section we propose to model funnel-flow through a rat-hole. The model is illustrated by
the configuration shown schematically in Figure 3. In this figure B0D and B ′

0D
′ represent the

walls of the silo (which need not necessarily be straight and vertical). The origin of coordinates
O is taken to be on the central axis of the rat-hole at a point which is defined later. In plane
funnel flow the rat-hole is assumed to be a vertical channel bounded by the planes x = ±a;
these are represented in Figure 3 by A0E and A′

0E
′. The configuration is symmetrical about

x = 0, and so it is sufficient to consider the region x ≥ 0. Initially, at time t = 0, the
material in the triangular region A0B0C0 flows into the rat-hole by shear on the plane C0B0
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with horizontal velocity component −U. It is assumed that C0B0 is at the critical slope angle
φ and so the vertical component of velocity in A0B0C0 is −U tanφ. The active part of the
rat-hole is the region A0C0C

′
0A

′
0, and it is assumed that the solution described in Section 3

(with m = 1) is applicable in this region. The material in B0DEC0 is at rest and that in the
lower part of the rat-hole, that is C0EE′C ′

0, falls vertically under gravity, provided that the
gravitational force on this material exceeds the frictional forces applied across the surfaces
C0E and C ′

0E
′.

Subsequently, the interface between the moving wedge and the dead material translates
downwards, so that at time t > 0 the wedge occupies the region ABC and the material that
was initially in A0B0BA has flowed into or through the funnel. The surface of the material in
the silo is now AB, and conservation of volume requires that the surface translates downwards
with speed U tanφ, and so, if U is constant

A0A = B0B = C0C = Ut tanφ. (5.1)

At time t the active part of the rat-hole is now A′AC ′C, and the solution described in Section 3
applies in this region .The material in BDEC is ‘dead’, and that in CEE′C ′ falls under gravity
through the rat-hole. It is important to note that, relative to axes fixed in the silo, the motion
described is not a steady motion. It is steady relative to a frame of reference that translates in
the negative z direction with speed U tanφ.

A similar flow field is assumed in the case of cylindrical funnel flow, with the rat-hole being
represented by a circular cylinder bounded by r = a. In this case a rather more complicated
flow is required in the feeder region analogous to ABC, which we shall not consider here, but
it is still assumed that the material shears on itself on the surface BC, and that this surface
translates downwards with constant speed U tanφ.

5.1. PLANE FUNNEL-FLOW

With the configuration described above and illustrated in Figure 3, the boundary conditions
on the velocity are the symmetry condition u(0, z) = 0, and for t > 0, the condition at the
surface of the rat-hole

u(a, z) = −U on AC, u(a, z) = 0 on CE. (5.2)

Hence, on assuming the solution obtained in Section 3 for the region A′ACC ′, we find from
(3.11) and (5.2) that A = −U/a and B = 0, and therefore

u = −U
x

a
,

w = −U

a

{
l tanφ log(l2 − x2)

1
2 + 2 sec φ(l2 − x2)

1
2 − z

}
− C, (5.3)

where C here denotes a further arbitrary constant. Now for the stress boundary conditions,
symmetry about the z−axis implies that σxz = 0 at x = 0, which is satisfied automatically
in view of (2.4)3 and (3.2). We further require that the material should shear on itself along
x = ±a, so that along these surfaces the maximum shear stress is mobilised and therefore on
x = a we require

σxz

σxx
= − tanφ,
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which on using (2.4) and (2.5) gives

ψ(a) = 1
4π − 1

2φ, (5.4)

and it follows that the constant � in the solution (3.1) is a, the rat-hole half-width. Thus the
stress field in this region is completely prescribed by (3.1) and (3.2) and the velocity field
is given by (5.3) with � = a. It is not possible in this model to prescribe pointwise traction
conditions on the free surface A′

0O0A0, but by equilibrium there is zero resultant force on this
surface.

To analyse the velocity field (5.3) it is convenient to introduce dimensionless variables

u = u

U
, w = w

U
, x = x

a
, z = z

a
, χ = χ

Ua
, t = Ut

a
. (5.5)

In terms of these variables the velocity field (5.3) takes the form

u = −x,

w = − tanφ log(1 − x2)
1
2 − 2 sec φ(1 − x2)

1
2 + z + W(t), (5.6)

where W(t) represents a time-dependent velocity. We now fix the origin of coordinates O by
specifying that w = 0 at z = 0 when t = 0. Hence we require W(0) = 2 sec φ, and since the
flow field translates in the negative z direction with speed U tanφ, we have

W(t) = t tan φ + 2 sec φ, (5.7)

and hence, from (5.6)

w = − tanφ log(1 − x2)
1
2 − 2 sec φ{(1 − x2)

1
2 − 1} + z + t tanφ. (5.8)

The variation of w with x at z = 0 and time t = 0 is shown in Figure 4. We note that w
has a logarithmic singularity at x = 1, but that the logarithm term in (5.8) has a significant
effect only in a small region adjacent to x = 1. The velocity profiles for other values of z and
t differ from the one shown in Figure 4 only by the superposition of a velocity of magnitude
z + t tanφ.

The non-dimensional velocity components u and w are related to the non-dimensional
stream function χ by

u = ∂χ

∂z
, w = −∂χ

∂x
, (5.9)

and it follows from (5.6), (5.8) and (5.9) that

χ = 1
2 tan φ {(1 + x) log(1 + x) − (1 − x) log(1 − x) − 2x}

+ secφ{sin−1 x + x(1 − x2)
1
2 − 2x} − x

{
z + t tan φ

}
, (5.10)

in which an integration constant has been chosen so that χ = 0 when x = 0, z = 0 and
t = 0. The streamlines (trajectories of the velocity vector) at a given time t are the curves
χ = χ0, where χ 0 is constant, and hence χ0 = 0 corresponds to the streamline A′

0O0A0

through x = 0, z = 0 (the origin O0 in Figure 3) at t = 0. Since there is no flux across a
streamline, there is no flow across A′

0O0A0 at t = 0, or in general across A′A at time t , and
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Figure 4. Magnitude of the non-dimensional downwards vertical velocity w(x, 0) along z = 0 and at time t = 0
as determined from (5.8) with φ = π/6.

so the funnel is fed solely by flow of material across AC and A′C ′. From (5.10) the equations
of the streamlines can be written as

z = −χ0

x
− t tanφ + 1

2 tanφ
{
(x−1 + 1) log(1 + x) − (x−1 − 1) log(1 − x) − 2

}
+ secφ

{
x−1 sin−1 x + (1 − x2)

1
2 − 2

}
. (5.11)

Clearly if χ0 > 0, then z → −∞ as x → 0, and if χ 0 < 0, then z → ∞ as x → 0.
Hence each of the streamlines parametrized by positive χ0 is asymptotic to the negative z

axis, and each streamline corresponding to negative χ0 is asymptotic to the positive z axis.
The upward- flowing streamlines are not relevant to the present problem, and so we consider
that χ0 ≥ 0. The streamline defined by χ 0 = 0 thus forms a natural boundary to the flow field;
however, it is not suggested that it necessarily forms the actual material surface, because zero
traction boundary conditions are not satisfied on it. This streamline has zero slope at x = 0; it
intersects the z axis at z = 0 and the channel walls x = ±1 (the points A′

0 and A0 in Figure 3)
at z = tanφ(log 2 − 1)− (2 − π

2 ) secφ. The field of streamlines at t = 0 is shown in Figure 5
for φ = π/6. The numbers on the streamlines denote values of χ0 on the streamlines. At
subsequent times the field is translated in the negative z direction without distortion by an
amount t tanφ.

Because the motion is not steady the particle paths do not coincide with the streamlines.
The particle paths are given parametrically by the equations

dx

dt
= u(x, z, t),

dz

dt
= w(x, z, t). (5.12)
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Figure 5. Streamlines for the velocity field (5.6)1 and
(5.8) as calculated from the stream function (5.10) with
t = 0 and φ = π/6.

Figure 6. Particle paths which cross x = 1 at time t = 0
as determined from (5.18) for φ = π/6.

Hence, from (5.6) and (5.12)

dx

dt
= −x,

and therefore

x = Xe−t , t = − log(x/X), (5.13)

where (X,Z) denote the dimensionless coordinates at t = 0 of the particle which has scaled
coordinates (x, z) at time t .
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Now from (5.8) and (5.12)2 we have

dz

dt
= z + t tan φ − tanφ log(1 − x2)

1
2 − 2 sec φ

{
(1 − x2)

1
2 − 1

}
, (5.14)

and by substituting for t from (5.13)2 in (5.14) and noting that dz/dt = −xdz/dx there follows

x
dz

dx
= −z + tanφ log(x/X) + tan φ log(1 − x2)

1
2 + 2 sec φ

{
(1 − x2)

1
2 − 1

}
,

and hence

x z =
∫ [

tanφ
{

log(x/X) + log(1 − x2)
1
2

}
+ 2 sec φ

{
(1 − x2)

1
2 − 1

}]
dx + K

= tanφ

{
x log(x/X) + 1

2
(1 + x) log(1 + x) − 1

2
(1 − x) log(1 − x) − 2x

}

+ sec φ
{

sin−1 x + x(1 − x2)
1
2 − 2x

}
+ K, (5.15)

where K is constant on a particle path. Since z = Z when x = X

X Z = tanφ

{
1

2
(1 + X) log(1 + X) − 1

2
(1 − X) log(1 − X) − 2X

}

+ sec φ
{

sin−1 X + X(1 − X
2
)

1
2 − 2X

}
+ K. (5.16)

Hence, by eliminating K from (5.15) and (5.16), and simplifying, we obtain the equations of
the particle paths:

z = X Z

x
+ tanφ

{
log

(
x

X

)
+ 1

2

(
1

x
+ 1

)
log(1 + x) − 1

2

(
1

x
− 1

)
log(1 − x)

−1

2

(
1

x
+ X

x

)
log(1 + X) + 1

2

(
1

x
− X

x

)
log(1 − X) − 2

(
1 − X

x

)}

+ secφ

{
sin−1 x

x
− sin−1 X

x
+ (1 − x2)

1
2 − X

x
(1 − X

2
)

1
2 − 2(1 − X

x
)

}
. (5.17)

The paths of the particles which enter the rat-hole across x = 1 at time t = 0 follow by setting
X = 1 in (5.17) which gives

z = Z

x
+ tanφ

{
log x + 1

2

(
1

x
+ 1

)
log(1 + x) − 1

2

(
1

x
− 1

)
log(1 − x)

−2

(
1 − 1

x

)
− log 2

x

}
+ secφ

{
sin−1 x

x
+ (1 − x2)

1
2 − π

2x
− 2(1 − 1

x
)

}
. (5.18)

The particle paths are asymptotic to the negative z-axis provided that Z < −(2−log 2) tan φ−
(2 − π

2 ) secφ. Some typical paths of particles crossing x = 1 at time t = 0 are shown in
Figure 6, where the numerical values shown on the curves are values of Z. Paths of particles
crossing x = 1 at subsequent times t are displaced downwards by a scaled distance t tanφ.



Non-dilatant double-shearing theory applied to granular funnel-flow in hoppers 69

5.2. AXIALLY SYMMETRIC FUNNEL-FLOW

Similarly, for axially symmetric funnel-flow, we assume the velocity boundary conditions

u(0, z) = 0,

u(a, z) = −U on AC, u(a, z) = 0 on CE, (5.19)

and then from the m = 1 solution given in Section 4 we have A1 = −U/a and B1 = 0 and,
in terms of dimensionless variables

u = u

U
, w = w

U
, r = r

a
, z = z

a
, χ = χ

Ua2
, t = Ut

a
, (5.20)

the velocity field can be shown to become (provided that sinφ �= 1/2)

u = −r,

w = −3rT

(1 − 2 sin φ)
− 2 sin φ

∫
rdT

(1 + sinφ)T 2 − (1 − sin φ)
+ 2z + W(t), (5.21)

where T = tanψ and r and T are related by (4.3) and W(t) is a function of t . We note that
the constant r0 is determined by the condition

ψ(a) = 1
4π − 1

2φ, (5.22)

which means that T (a) = (1 − sinφ)/ cosφ and from (4.3) r0 is given explicitly as

r0

a
= 2n(1 − 2 sin φ)n

(
cosφ

1 − sinφ

)2n−1

. (5.23)

The special case φ = π/6, sinφ = 1/2 and n = 0 can be included by a limiting process,
but is more easily dealt with directly. In this case (4.3) gives T = tanψ = r0/r = 1/

√
3r and

the stress solution (4.1) simplifies to become

σrr = −
√

3ρg

4a

(
r2 + a2

)
, σθθ = −

√
3ρg

4a

(
3r2 + a2

)
,

σzz = −
√

3ρg

4a

(
3r2 + a

3

2
)
, σrz = ρgr

2
,

(5.24)

It then follows from (4.9) that the velocity field for φ = π/6 is given by

u = −r, w = − 1√
3

log(1 − r2) + 2z + W1(t), (5.25)

and for simplicity we consider this case. As in the plane flow case, W1(t) is determined by the
requirement that w = 0 at r = 0 on the surface z = −t tanφ = −t/

√
3; thus W1(t) = 2t/

√
3

and hence

w = − 1√
3

log(1 − r2) + 2

(
z + t√

3

)
. (5.26)

The velocity profile at z = 0, t = 0 is shown in Figure 7. The velocity at other times is given
by superposing the velocity (z + t/

√
3) on this.
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Figure 7. Magnitude of the non-dimensional downwards vertical velocity w(r, 0) along z = 0 and at time t = 0
as determined from (5.26) with φ = π/6.

The scaled velocity components are related to the scaled stream function as

u = 1

r

∂χ

∂z
, w = −1

r

∂χ

∂r
, (5.27)

and hence, from (5.25) and (5.26) we have

χ = − 1

2
√

3

{
(1 − r2) log(1 − r2) + r2}− r2

(
z + t√

3

)
, (5.28)

where the integration constant has been chosen so that χ = 0 when r = 0, z = 0 and t = 0,
so that χ = 0 represents the streamline A′

0O0A0 at t = 0. The streamlines are the curves
χ = χ0 (χ0 ≥ 0) and from (5.28) they may be expressed as

z = −χ0

r2 − t√
3

− 1

2
√

3

[(
1

r2 − 1

)
log(1 − r2) + 1

]
. (5.29)

All of the streamlines except χ0 = 0 are asymptotic to the negative z axis. The field of
streamlines at t = 0 is shown in Figure 8 where the numbers on the streamlines denote the
value of χ0 on the streamline.

The particle paths are given by

dr

dt
= u(r, z, t),

dz

dt
= w(r, z, t), (5.30)

which give, from (5.25) and (5.26)

dr

dt
= −r,

dz

dt
= − 1√

3
log(1 − r2) + 2

(
z + t√

3

)
. (5.31)
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Figure 8. Streamlines for the velocity field (5.25)1 and
(5.26) as calculated from the stream function (5.28)
with t = 0 and φ = π/6.

Figure 9. Particle paths which cross r = 1 at time t = 0
as determined from (5.33) for φ = π/6.

These may be integrated in a manner similar to that used in the plane flow case to give

r = Re−t , t = − log (r/R),

z = R
2
Z

r2 − 1

2
√

3

{(
1

r2 − 1

)
log(1 − r2) −

(
1

r2 − R
2

r2

)
log(1 − R

2
) (5.32)

−2 log
r

R
− 2

(
R

2

r2 − 1

)}
,
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where (R,Z) is the position at t = 0 of the particle that occupies (r, z) at time t . In particular
the paths of particles that are on the edge r = 1 of the rat-hole at t = 0 are given by

z = Z

r2 − 1

2
√

3

{(
1

r2 − 1

)
log(1 − r2) − 2 log r − 2

(
1

r2 − 1

)}
. (5.33)

Some of these particle paths are shown in Figure 9, where the numerical values shown on the
curves are values of Z. They are asymptotic to the negative z axis for all Z < −1/

√
3.

6. Conclusions

For the most part the results described in section 5 are plausible and qualitatively are reason-
ably consistent with the observed behaviour of granular materials in funnel flow. There are
however a few questions that require some discussion.

Firstly, the fields of streamlines and particle paths do not conform to expected behaviour
in the neighbourhood of the upper surface z = −Ut tanφ of the rat-hole, in that in this region
there is a small upward component of the motion close to the funnel walls. The probable
reason for this is that the model does not admit satisfaction of stress boundary conditions at the
free surface. This surface is necessarily a streamline, but the stress solutions (3.1) and (5.24)
imply that the streamlines χ0 = 0 are subject to a variable vertical pressure, as well as a shear
tractions, and these forces must be applied in order to maintain the given velocity solutions.
The natural way to apply these normal pressures is by a surcharge of granular material, but
such a surcharge in turn affects the flow field. It follows therefore that the model cannot be
expected to give good results in the neighbourhood of the free surface. This does not preclude
its applicability at depths well below this surface. A more refined model might involve a
boundary layer solution close to the surface, but this would involve constructing the shape
of the free surface and probably require including regions in the body in which the stress is
below yield and which move as rigid bodies. Such an analysis would be very difficult, even as a
numerical exercise. Similar considerations apply to the transition region in the neighbourhood
of C ′C in Figure 3, at the base of the active part of the rat-hole.

Another difficulty is the prediction of logarithmic singularities in the vertical velocity
component at the boundary of the rat-hole. These predict infinite upward velocity at x = a

and r = a, which is clearly unrealistic. However the singularity is weak, affects only a small
region near the boundary of the rat-hole, and is hardly noticeable on the scale of Figures 5–
6 and 8–9. There is no discontinuity in the streamlines or particle paths. The singularity in
the model may be due to neglect of effects such as dilatancy, finite grain size and inertia, as
well as the idealised geometry, and is probably not reflected in the behaviour of real granular
materials.

Despite these limitations, the model seems to be capable of capturing many of the features
of funnel-flow in silos and hoppers. It has been shown that, away from the free surface,
some exact solutions of the equations of the non-dilatant double-shearing theory for granular
materials give flow patterns that are similar to those observed in funnel-flow in the discharge
of rectangular and circular cylindrical silos and hoppers. Although the theory employed is a
simple one, and cannot reflect all the complexities of behaviour of real granular materials, it
appears to go some way towards describing the funnel-flow phenomenon.

In this paper we have only considered in detail the case m = 1 of (3.5) and (4.7). In
this case the horizontal velocity component is independent of the coordinate z, which seems
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appropriate for a silo with vertical walls, such as is shown in Figure 3. The case m = 2 gives
horizontal velocity components that vary linearly with z, which may be a better model for
funnel flow in wedge-shaped or conical silos, but this case has not been investigated in detail.
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